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Abstract 
 

Various organisms share in common certain basic rules for a searching behavior. We 
hypothesize that these rules may emerge from basic properties of non-linear systems as a 
whole, rather then being evolved from a scratch gradually. In order to support this hypothesis, 
we have developed a virtual agent that consists of three simple central pattern generators 
(CPG). These CPGs are driven by an internal noise, which results in phase transitions in their 
activity.  External stimuli modify the activity via sensors and food consumption. The 
interaction among the activity of CPGs and external influences give rise to an emergence of 
searching rules that are similar to those shared by various organisms, thus favoring the above 
hypothesis. The hypothesis could be verified further by investigating various types of non-
linear systems in different environments.  Also, such an investigation may answer the 
question: how simple could be an underlying dynamic system to ensure viability of an agent 
in a given environment? To what extent adaptive abilities of living being are constrained and 
steered by dynamic laws of non-linear systems?  
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1. Introduction 
  

An adaptive behavior in living beings could be described as a set of rules for adaptive 
responses to stimulation. This led naturally to a designing of artificial agents provided with 
explicitly defined rules that control, for example, searching behavior. This approach allows 
for a study of holistic behavior emerging in individuals from interactions among rules.  The 
subsumption architecture of autonomous robots (Brooks, 1986) and virtual ecosystems 
(Terzopoulos, Tu and Grzeszczuk, 1994) are representative examples of the approach. 

However, the research in the field of artificial agents provides also an opportunity to raise 
fundamental problem: what is an origin of searching rules in real organisms? One answer to 
the problem is that the rules are developing gradually, starting from scratch, in a course of 
natural selection. This answer is intuitively appealing, but, in fact, provides a little insight 
regarding an origin of adaptive rules. An alternative answer to the problem is that basic 
searching rules could emerge as a whole from basic principles of non-linear dynamics that 
underlies the animal behavior. The same non-linear phenomena may reveal themselves in 
very different systems; therefore, one might expect the resulting searching rules, at least basic 
ones, to be principally similar in different organisms. This paper presents a simple “dynamic 
agent” which produces biologically plausible rules for a searching behavior of simpler types: 
unguided wandering, olfactory orientation using one sensor, response to food patches and 
obstacle avoidance.    
 This paper is organized as follows. In the next section, we consider what is required of the 
dynamic system intended to study an origin of biologically plausible behavioral rules. 
Specific searching tasks and searching rules used by organisms to accomplish these tasks are 
described in Section 3. The architecture of agent is described in Section 4, and Section 5 
shows how the agent accomplish the above tasks and which rules it produces. In Section 6, 
we discuss to what extent the agent’s behavior conforms principles of animal behavior (6.2), 
how the agent produce searching rules (6.3), as well as implications for the use of artificial 
agents to study an origin of adaptive behavior in living beings (6.4). 
 
2. General considerations and approach 

 
The dynamic approach is well established in the field of “New Artificial Intelligence” 

based on biological insights (Steels, 1994; Beer, 1997).  However, several basic properties of 
organism’s behavior should be taken into consideration when designing an agent capable of 
biologically plausible behavioral rules.  
 
2.1. Spontaneous activity in organisms  

 
All organisms from unicellular ones to higher animals are capable of a spontaneous 

behavioral activity. In bacteria Escherichia coli, for example, this activity stems from an 
interaction of metabolic cycles within a bacterial cell.  This activity manifests itself at a 
behavioral level as an apparently spontaneous wandering: a sequence of tumbles divided by 
straight runs which are randomly directed and have varying duration (Berg and Brown, 1972; 
Müller, di Primio and Lengeler, 2001). In higher animals, a nervous system, as well as it’s 
components like ganglia, reveals self-organizing dynamics (Erdi, 2000), which may give rise 
to complex spontaneous activity. One example is short-term oscillations of activity in mice, 
which could be explained by a dynamic chaos in nervous activity (Guillot and Meyer, 2000).  
Another example is complex fractal activity pattern in Drosophila under constant condition 
(Cole, 1995; Martin, Ernst and Heisenberg, 1999a). In the last case, evidences were found 
that some neuronal circuits in the neural system of Drosophila are responsible for the pattern 
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(Martin, Raabe and Heisenberg, 1999b). Thus, central pattern generators (CPG) drive the 
spontaneous activity in organisms.  
 This spontaneity can be interpreted in terms of autopoietic theory. According to the theory, 
a living being is an operationally closed system, that is, the self-referring system which 
operates on it’s own states. The process, which takes place within this system, produces 
components that interact in such a way that they maintain the same process that produce these 
components (Maturana, 1980; Varela, 1992). Thus, the process is autopoietic (self-creating) 
and is aimed solely at it’s own maintenance, while an observable spontaneous activity is an 
external manifestation of this process. This implies that the activity per se is not necessarily 
aimed at accomplishment of any task, rather it provides a basis for generation of adaptive 
rules for various tasks (see Section 2.3). 

 
2.2. Variability and structure of the spontaneous activity 

 
It should be emphasized that spontaneous movements of living beings are notoriously 

variable, like a length and direction of runs in wandering bacteria. Many authors argued 
(though using different arguments) that the intrinsic behavioral variability is an essential part 
of behavioral adaptation (see, e.g., Stewart, 1995; Mobus and Fisher, 1999; Inglis, 2000).  

This quantitative variability is typically accompanied by a qualitative structure of 
spontaneous activity. In bacteria E. coli (Berg and Brown, 1972; Müller et al., 2001) and 
nematode Caenorhabditis elegans (Pierce-Shimomura, Morse and Lockery, 1999; Shingai, 
2000) this structure consists of alternation of two distinct behavioral modes. In the absence of 
any changes in external stimulation, they spontaneously switch between relatively straight 
randomly directed runs and sharp changes in movement direction: tumbles in bacteria and 
sharp turns in nematodes.   Spontaneous fractal behavioral sequences also imply apparent 
temporal structure: behavioral events are clustered, while clusters are divided by wide gaps. 
In Drosophila, for example, events are stops divided by periods of motion (Cole, 1995). 
Similarly, the swimming of goldfish in uniform environment consists of runs divided by 
series of turns (Nepomnyashchikh and Gremyatchikh, 1996). Both active periods in 
Drosophila and runs in goldfish have a variable duration.  

 
2.3. Generation of behavioral rules 
 

The autopoietic theory postulates that external influences do not determine the intrinsic 
spontaneous process; rather they perturb it according dynamical laws that control the process. 
From a viewpoint of external observer, perturbations of the process are seen as responses to 
external stimuli according some behavioral rules (Maturana, 1980; Varela, 1992; Riegler, 
2001). This does mean that any behavioral rule reflects dynamical laws of the above basic 
process. In other words, any behavioral rule an organism is able to produce is nothing else but 
a modification of the basic spontaneous process.  
 The postulate can be illustrated using examples from the previous section. The movement 
pattern of bacteria (Berg and Brown, 1972) and nematode (Pierce-Shimomura et al., 1999) 
modifies when they perceived a chemical stimulus. Runs directed roughly away the source of 
stimulus are quickly terminated by a change of movement direction, while those directed 
roughly toward the source last longer. As a result, both species reveal an efficient orientation 
in gradients of chemicals. When goldfish is presented with a visual landmark, turns became 
clustered around them, so that fish explores an area around the landmark (Nepomnyashchikh, 
2000). Thus, the structure of spontaneous activity does not changes fundamentally in all these 
organisms, rather quantitative changes serves to adjust it to changed external situation.  
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2.4. General approach  
 

The above considerations are generally not taken into account in the field of designing 
adaptive artificial agents. First of all, the demand for spontaneous, independent of an external 
signals activity is frequently neglected. For example, simulations of metabolism in unicellular 
organisms were used to design artificial agents capable of avoiding obstacles (Ojala, 1998) 
and seeking for light (Ziegler, Dittrich, and Banzhaf, 1998). However, an external sensory 
input is needed to maintain an activity of these agents. When deprived of such an input, 
agents run through a transient phase and reach an equilibrium state. 

Even if CPGs capable of intrinsic activity are being developed for artificial agents, they 
usually lack for the variability and/or qualitative structure. For example, Clark, Anderson and 
Skinner (2000) developed a CPG-based agent that generates varying movements in response 
to a repeating stimulation, but moves along a straight line if there are no external stimuli.  
More recently, Di Paolo (2002) developed the agent capable of internally generated zigzag 
movements that serve as a part of efficient taxis. However, these movements result in a fairly 
predictable wavy path in the absence of orienting stimuli. To the best of our knowledge, only 
one CPG was developed to produce an animal-like spontaneously variable path (Mobus and 
Fisher, 1999). 

Furthermore, agents are typically developed using genetic algorithms or other tools to 
achieve some pre-specified particular tasks in a pre-defined environment, e.g. taxis. As a 
result, an agent reveals rules needed for these tasks, but remains incapable of solving even a 
simplest problem that had not been foreseen by a designer. For example, a simple agent 
consisted of few neurons was developed purposively for orientation within a continuous odor 
field (Beer and Gallagher, 1992), but it remains unclear what the agent should do if the field 
is interrupted by gaps, or a stimulation vanishes completely, or an obstacle is encountered. 
An additional “evolution” and complication of agents is needed to provide them with 
additional rules for new tasks (see e.g., Kodjabachian and Meyer, 1998). To our knowledge, 
no attempt was made to start a development of an agent with a variable and structured 
“purposeless” spontaneous activity, and then investigate a role the activity possibly plays in a 
generation of rules for different tasks.  

Additionally, the most widespread method for creation of agents is based on artificial 
neural networks (ANN) that are capable of complex dynamics (Beer, 1997; Ijspeert, 2001; Di 
Paolo, 2002). If a number of neurons is not too large, networks’ dynamics can be analyzed 
(Beer, 1997) and command “neurons” can be identified (Beker, Aharonov and Ruppin, 2001).  
However, ANNs developed to control an agents’ behavior are typically complex and it is 
hard to analyze them and see which type of dynamics account for behavioral rules revealed 
by an agent. On the other hand, a dynamic process, which controls an agent behavior, should 
be clearly specified, if we want to see how observed behavioral rules are generated. To this 
end, an agent should consist of few components.  

Basing on the above considerations, we developed the agent that reveals a spontaneous 
activity within each of its few CPG. All these CPGs are identical and are represented by well-
known one-dimensional logistic map (May, 1976). The activity of a CPG results from the 
non-linear phenomenon: noise-induced phase transitions. The phenomenon is well studied 
(Horsthemke and Lefever, 1984), which makes the observed agent’s behavior tractable.  

 
3. Tasks for the agent 

 
If adaptive behavioral rules really may emerge from basic properties of non-linear 

systems, then the same system is expected to produce rules, at least, for those tasks which are 
equally essential for survival of various organisms, either unicellular or multi-cellular ones. 
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We, therefore, adjusted parameters of agent to ensure phase transitions and provided it with 
different types of external stimulation, but in no case we changed parameters to improve a 
performance of agent when it faced different tasks. We suggest that at least some of the 
essential tasks and expected adaptive rules to accomplish them are as described below.  
  
3.1. Wandering 
 
 One could suggest an ordinary Brownian walk as a simple rule for the wandering in the 
absence of guiding cues, but a correlated random walk is a more realistic idealization for 
animals’ searching movements (for the sake of brevity, we refer to a walk as correlated if 
directions of animal’s sequential movements positively correlate). The correlated walk was 
observed under uniform experimental conditions in as different beings as spermatozoa 
(Mortimer, Swan and Mortimer, 1996), mites (Dicke and Burrough, 1988) and fish 
(Cougchlin, Strickler and Sanderson, 1992). The fact suggests that 1) the correlated walk 
reflects some basic properties of organism’s behavior rather than a specific organization of 
any particular organism, and 2) some internal mechanism can control the correlated walk 
even in the absence of ambient cues that could guide animals.  
 Some field and experimental data suggest also the Lévy walk as another idealization for 
animal wandering (Viswanathan et al., 1999; Levandowsky, White and Schuster, 1997). Like 
the Brownian walk, the Lévy one consists of randomly oriented uncorrelated runs, but the 
distribution of run lengths is different: most runs are very short and keep a walker within a 
restricted area; series of short runs are interrupted by rare very long runs which lead a Lévy 
walker far away searched areas.   
 Whichever of these idealizations one chooses for an animal walk, in both cases a path of 
walker intersects itself less frequently than it can be expected of Brownian walker. As a 
result, animals avoid revisiting previously searched sites and finds more new sites per time 
unit (Zollner and Lima, 1999; Viswanathan et al., 2000), which makes a searching behavior 
more efficient.  
 Possibly, the simplest way to describe a walk quantitatively is to consider a group of non-
interacting animals that spread from the same point. The spread of Brownian walkers may be 
described as the Gaussian diffusion. In case of non-Brownian walk, the mean squared 
displacement (MSD) of swarm from the point of release increases with time more rapidly as 
compared with Brownian walk, resulting in the “anomalous” diffusion. Real organisms 
indeed reveal the anomalous diffusion (Root and Kareiva, 1984; Johnson, Milne and Wiens, 
1992; Nams, 1996; Levandowsky et al., 1997; Upadhyaya et al., 2001).  Therefore, one can 
require of wandering agents to reveal the same property in order to be both efficient and 
biologically plausible.  
 On the other hand, the anomalous diffusion is not observed over all time scales in real 
organisms: an increase of MSD decelerates at larger scales  (Johnson et al., 1992; see also 
Levandowsky et al., 1997, for brief review of data on leukocytes and fibroblasts). 
Accordingly, a realistic agent should reveal a similar deceleration. 
 
3.2. Orientation  
 
 When an animal finds some cue to guide it, then the wandering should be replaced with 
another rules. One of the most primitive types of guided movements is the orientation within 
an odor gradient using single sensor. This orientation is based on an interaction between 
spontaneous turning behavior on the one hand, and increment of stimulation an organism 
perceives at sequential movements, on the other. If an agent moves toward a source of 
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stimulation, then the increment is positive and suppresses turns, thus making an agent to keep 
the current heading (Mason, 1975).  
  
3.3. Escaping gaps in odor gradients   
 
 An odor gradient is unlikely to be smooth in natural environments. It may be disrupted 
because of an air turbulence, or because an odor is emitted by pulses, rather than 
continuously. Under these circumstances, animals may persist moving in a previously chosen 
direction for a while, even if an odor is not perceived. This would help to move through a 
narrow gap and encounter a next odor pulse. On the other hand, an animal should switch to 
some kind of searching movement if an odor is not perceived for a long time, because this 
might mean that the direction is wrong (Vickers, 2000). 
 
3.4. Area-restricted search  
 
 The next rule is the thorough search within a restricted area the animals performs upon 
finding a single prey (Bell, 1991; Grünbaum, 1998). This rule is obviously adaptive: a food 
and other resources are typically clustered in natural environments. This area-restricted search 
(ARS) is accompanied by a significant increase in tortuosity of animals’ paths, which helps to 
keep it within the area. Even if the path significantly differs from random before a prey 
capture, it may become Brownian after the capture  (Winkelman and Vinyard, 1991).    
 
3.5. Sampling food patches    
 
 The consequence of ARS is that animals show a general preference for more reach food 
patches. However, animals may leave even a rich patch to “sample” other patches. This 
sampling obviously results in a sub-optimal patch use in a short run, but might be adaptive in 
a long run, because it allows for tracking temporal changes in an environment and, 
potentially, discover most profitable food sources (Stephens and Krebs, 1986).  The sampling 
can be observed even under simplified and stable experimental conditions, where a 
distribution and quality of few food patches is familiar to animals (Wildhaber and Crowder, 
1991). This means that the sampling is not necessarily the response to a patch quality or other 
external influences, but can be one more manifestation of intrinsic spontaneous activity.  
  

Left Turn 
CPG 

Right Turn 
CPG 

Sensor 

Feeding 
CPG 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.   Architecture of the agent. See text for explanations. 



 7 

4. Simulations 
 

4.1. Agent 
 
The agent consists of three CPGs and has a single odor sensor (figure 1).  CPGs are 

always active, while external stimuli modify their activity via the sensor and food 
consumption. The first CPG controls feeding, while other two, right and left, CPGs control 
rightward and leftward turns. Outputs of these CPGs are feeding tendency (F), and right (R) 
and left (L) turn tendencies respectively. The tendencies change by discrete steps (i) and are 
kept within a restricted range by means of feedback: 
 
           Fi+1 = λF

i  Fi  (1 − Fi ) 
 
           Li+1 =λL

i  Li  (1 − Li )                                                                                                      (1) 

 

           Ri+1 = λR
 i  Ri  (1 − Ri ),      0 < F, L, R < 1,  0 < λ < 4 

 
We assume that there is an internal noise in a CPG that is added to parameters λ. For the sake 
of simplicity, we assume the noise in each CPG to be white Gaussian and independent of 
noise in other CPGs.  We assume further that the feeding CPG feeds forward both turn CPGs. 
Finally, turn CPGs inhibit one another and receive a sensory input I. Like the noise, all these 
excitatory and inhibitory inputs are added to parameters λ. Basing on these assumptions, the 
parameters are defined as follows: 
 
           λF

i  = µ + σ ξF
i   

 
           λL

i  = µ + σ ξL
i   + Fi  − Ri  − Ii                                                                                       (2) 

 
           λR

i   = µ + σ ξR
i  + Fi − Li   − Ii  , 

 
where µ is the average parameter, ξ is the Gaussian noise varying between  − 1.0 and        

+ 1.0,  and σ is  the peak magnitude of internal noise. As it was pointed out in Section 2.4, the 
noise causes phase transitions in a CPG. More specifically, an accidental temporary increase 
in noise magnitude boosts the activity of CPG. The activity remains high long after the noise 
magnitude drops, because the behavior of the CPG depends on its previous states. Similarly, 
an accidental decrease in the noise magnitude causes a long-lasting decay of activity. Thus, 
noise transitions result in alternating series of high and low activity. Duration of series varies 
to a great extent  (Nepomnyashchikh and Gremyatchikh, 1996).  

The sensor does not respond to an absolute intensity of ambient stimulation S. Instead, the 
sensory input into CPGs represents the increment of stimulation, that is, the relative 
difference between stimulation intensities perceived at steps i and i − 1: Ii = (Si − Si-1) / Si-1. 
Thus, a positive increment causes a decrease in parameters λ (equations 2), and vice versa. 
Note that sensory inputs into right and left turn CPGs are equal.  
 To simulate a two-dimensional walk, we assume that at any step the agent turns by angle 
Ti (in radians) that is simply the difference between right and left turn tendencies at the step i: 
 
          Ti  = Ri − Li .                                                                                                                   (3) 
 
Upon turning, the agent moves ahead for 1 distance unit. 
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4.2. Tasks and simulation details 
      

The results described in the Section 5 were obtained at µ = σ = 1.10, but qualitatively the 
same results hold when the parameters varied 1.05 to 1.20. Simulations were started with all 
variables set to 0.1, and initial headings of agents distributed uniformly and randomly within 
360°.  Each individual run consisted of 10,000 steps preceded by 1,000 idle steps to avoid an 
influence of possible transient process on agent’s movements. At least 100 individual runs 
were performed for each task presented to the agent. 
 Wandering.  In order to simulate a wandering, 100 individuals were positioned at the 
same point in space, and then their movements were tracked. Thus, all individual paths taken 
together can be viewed upon as a dispersal of group, which consists of non-interacting 
individuals. We assumed an ambient stimulation to be constant in the case of wandering, so 
that the sensor sent no input into CPGs. 
 Orientation. Each individual path within an odor gradient started with placing the agent at 
1,000 distance units from the center of continuous Gaussian-shaped field of  “odor”, and 
finished after the agent has either reached a source of odor (the circle with a radius of 5 unit 
in the center of gradient), or traveled for the total distance of 10,000 units. Absolute 
intensities of stimulation at the center and start point were set 100 and 0.1 arbitrary units 
respectively. We also inserted no-stimulation gaps 100 to 500 units wide across the odor 
field.  

Response to prey. Simulations of ARS were based on the following assumptions. When 
an animal actually finds a prey, a time is needed to consume it.  We assume that this time is 
relatively short in comparison with the whole process of search. Accordingly, the feeding 
lasted for 5 steps only in our simulations. An arbitrary chosen constant (1.0) was added to the 
average       parameter µ  in feeding CPG at each of these 5 steps of feeding in order to 
simulate an excitatory effect of food intake. We also added a negative constant (− 1.0) to the 
parameter, which could be interpreted as an attempt to eat some repelling prey. Finally, we 
assume that turn CPGs are still active during feeding and receive an input from the feeding 
CPG, but the agent does not actually move when it consumes a food item. We used absolute 
values of turn angles to characterize an after-effect of feeding on tortuosity of subsequent 
path. The reason is that the after-effect was not long enough to calculate MSD.  
 Sampling. Patches were simulated as parallel strips 100 units wide. The agent 
encountered upon a food item at every 20th step of iterations within a rich patch, and every 
100th step within a poor patch. Rich and poor patches were separated by empty ones (figure 
6). The regular rather than stochastic encounters with food items were simulated in order to 
avoid runs of bad luck that could provoke the agent to leave a patch. Each simulated run 
started with the agent placed at a random position within the environment. 
 
5.  Results 

 
5.1. Wandering   

 
The representative fragment of wandering path is shown in figure 2. Typically, paths have 

a noticeable structure: they consist of relatively straight runs and more or less tight loops 
between them. Representative log-log plot of MSD vs. time spent spreading is shown in 
figure 3. The plot is typical in that MSD increases with time more rapidly than it can be 
expected of a group of Brownian walkers. Thus, the agent really reveals anomalous diffusion 
and, therefore, non-Brownian walk without any external guidance. 
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       Figure 2.  A fragment of simulated path, 1000 steps long. 
 

 
 

Figure 3.  Plot of  MSD vs. time spent spreading by the “swarm” 
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On the other hand, the MSD should rise at the same rate over all time scales in case of ideal 
Lévy walkers, i.e. the log-log plot of MSD vs. time should fit a straight line. This is by no 
means a case for MSD in our simulations: agents reveal the deceleration of MSD, which is 
consistent with dispersal of real organisms.  
 The behavior of agent is explained as follows. As it was described in Section 4.1, noise-
induced phase transitions result in alternating series of high and low output values in each 
CPG.  The analysis of individual paths has shown that loops correspond to series where a 
difference between turn tendencies is large. Series of high feeding tendency enhances the 
activity of turn CPGs, which results in a higher difference between their outputs. As opposite, 
straight runs correspond to series of similar and low values of turn tendencies, and low values 
of the feeding tendency. 
  
 
5.2. Orientation 
 
  The agent practically always reaches the odor source. Its path consists predominantly of 
straight runs that rarely directed exactly toward the source (figure 4a,b). This behavior is 
explained as follows.  
 Both a positive increment in ambient stimulation and occasional decrease of noise 
magnitude suppress turn tendencies (equations 1 and 2). If these two events occur 
simultaneously, this may result in series of low output of both turn CPGs and, consequently, 
in a straight path, even if the agent deviates from the right direction to source.   
 A course correction is evoked by two events that act either separately, or in combination. 
First, an increment of stimulation decreases or even becomes progressively negative when the 
agent deviates from the source. Second, an occasional burst of internal noise results in a 
spontaneous series of high output in one of CPGs.  
 Once the increment increases as a result of turning toward a right direction and/or the 
spontaneous series of high output in CPGs break off, the agent stop turning and follows a 
new course persistently, even if it also deviates from the source. 
 As a result of all these events, the agent generally turns more frequently if it moves away 
from the source and vice versa, which is consisted with orientation rules of bacteria and 
nematodes described in Section 2.3. 
 The agent does not stop at the odor source upon reaching it. Instead, it repeatedly leaves 
the source in various directions and returns to it again. The agent may move up to 300 units 
away the source during these excursions, which could be interpreted as a sort of sampling 
behavior.   An excursion starts when series of low output occur simultaneously in both turn 
CPGs under the influence of internal noise.  

 
5.3. Gaps in gradients   

 
When entering a gap, the agent does respond to it immediately, but follows a previously 

chosen course for a while. As a result, it crosses a gap as if it does not exist at all, provided 
gap width does not exceed 100-200 units (figure 4a). This is explained by the fact that the 
agent is driven by   the dynamic process which depends on a  “memory” of its own previous 
states. Namely, if an output of both turn CPGs have been suppressed by a high stimulation 
increment during a movement up the gradient, then the output cannot rise quickly, even if the 
stimulation have ceased.  

However, the memory span is limited, and the output eventually increases in wider gaps. 
As a result, the agent switches to the wandering. As the wandering path includes long straight 
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runs, the agent has good chances to escape a gap and resume it’s movement toward the 
source (figure 4b). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Figure 4. Agent’s path in odor gradients. Sources of odor are marked with  
black circles. Gaps in gradients 200 (a) and 500 (b) units wide are 
represented by gray stripes.  
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5.4. Area-restricted search  
 
Figure 5 shows absolute values of turn angles before and after eating a single prey. It is 

seen that even the short feeding exerts a pronounced after-effect on turn angles, and therefore, 
path tortuosity. Turn angles still proceed to increase for a while after the feeding ceases, thus 
keeping the agent within a restricted area, and then gradually decrease. The duration of after-
effect varies from 10 to 100 steps among individuals. This ARS results from an increase of 
activity in the feeding CPG caused by a feeding. The increase enhances an output of turn 
CPGs and, therefore, evokes an intensive turning.  

Figure 5 shows also the response to an addition of negative constant to the feeding CPG. 
Turn angles proceed to decrease for relatively long time after   the feeding, while subsequent 
increase is very slow. The resulting paths are straighter than before feeding and take the agent 
away from the spot where prey was captured, suggesting a sort of avoidance.  

 
Figure 5. Area restricted search: an influence of  feeding on  a degree of 

subsequent turns (in radians). Each value is averaged over 100 
individuals. Vertical bar indicates  duration  of  feeding.   Black  line:  
positive       constant  (1.0)  is added to feeding unit. Grey line: 
negative constant   (-1.0)  is added.  
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5.5. Sampling   
 
 The time spent by agents within the rich patch equaled 85 ± 10% (m ± s.e.), as averaged 
over 100 individual runs. The sample individual path is shown in figure 6. After having spent 
some time within the poor patch, the agent crosses the empty patch and finds the rich one. As 
a whole, agents left rich patches in 34 runs, in spite of the overall preference for rich patches. 
Like excursions to a vicinity of odor source (Section 5.2), these departures from patches are 
explained by spontaneous series of low CPGs’ outputs. 
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Figure 6. Patch sampling. The agent started in poor patch (the start point is marked 
with arrow), crossed empty patch and finished in rich one. 

 
 
 
6. Discussion 
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6.1. Searching rules produced by the agent 
 

The agent reveals searching rules, which had not been pre-programmed explicitly or 
evolved gradually. The rules, however, have their counterparts in real organisms, and these 
counterparts have obvious adaptive value: 

• If deprived of guiding ambient stimuli, the agent performs a non-Brownian walk, 
which consists of spontaneous switches from relatively straight long runs to tight 
loops and vice versa. This walk results in an anomalous diffusion observed in 
population of agents.  

• The agent switches to the oriented movement when odor gradient is found. When 
moving to the source of odor, it does not follows changes in stimulation continuously, 
but leaps roughly toward a source and corrects the chosen direction only rarely.  

• If there is a gap in gradient, the agent persists with a chosen direction for a while, 
which help to get through narrow gaps and don’t loose a way to source. If a gap is 
wide, the agent eventually resumes non-Brownian walk, which help to find a way out 
of gap more efficiently as compared to ordinary Brownian walk. 

• Upon finding a food item in some area, the agent initiates a thorough search within 
restricted area and keeps doing so for a while, even if there are no more preys to 
stimulate the search. On the other hand, the agent leaves an area if captures a repulsive 
prey that suppresses feeding. 

• The agent prefers patches with higher food density, but also reveals a sampling 
behavior known in foraging animals. When within a food patch, the agent may leave it 
and sample elsewhere, which provides an opportunity to find richer patches. 
Similarly, upon reaching an odor source, it makes excursions to various directions, 
taking a chance to find other possible sources.  
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6.2. Are the rules biologically relevant? 
 

Obviously, the agent behaves in adaptive way within its simplified environment. The 
searching rules, which could be derived from its behavior, are strikingly similar to what is 
observed in many real organisms (compare Sections 3, 5 and 6.1). However, are these rules 
relevant to biological reality in more essential ways, besides the apparent similarity to 
behavior of real organisms? Many authors pointed to those principles of animal behavior, 
which account for their ability to solve real world problems efficiently. In this section, we 
compare some of these principles with those seen in the agent’s behavior. To do so, we will 
describe the behavior of agent as it seen by an external observer, with no reference to 
underlying mechanisms. Also, in spite of the fact that principles defined in different ways by 
different authors are closely interrelated, we will consider these principles separately for the 
sake of clarity. 
 First, an adaptive behavior is autonomous. The notion of autonomy is rather broad one. As 
a minimum, an autonomous being selects an appropriate rule all by itself, with no instructions 
from outside. Our agent reveals such a minimal autonomy. However, it was argued that a real 
autonomy requires also an ability to create rules anew for new tasks, rather than to select 
them from a list prepared by designer (Smithers, 1997). Obviously, rules described here are 
produced anew.  
 Second, it is now only a commonplace to say that an adaptive behavior is a result of 
interaction between intrinsic dynamics of agent and dynamics of its environment (see e.g., 
Beer, 1997).  This is the case with the agent. For example, its movements in the odor field 
results from the interaction between dynamics of CPG, on the one hand, and changes of 
external stimulation, on the other. 
 Third, animals typically do not respond to a momentary stimulation by a short-term single 
action. Instead, they produce a sequence of actions in response to a transient stimulus. This 
behavior is proactive in that an animal does not follow a sequence of stimuli, but completely 
changes an external situation. A typical example is an avoidance behavior in some juvenile 
organisms that performs a series of maneuvers in response to a short touch, thus avoiding 
more attacks. It was also shown experimentally that robots avoid obstacles and get out of 
corners more efficiently, if they are able to produce a rather long behavioral sequence in 
response to a momentary stimulation (Clark et al., 2000). Our agent reveals a proactive 
behavior when, for example, it leaves an area where a “repulsive” prey was found. 

Forth, the agent produces rules which can be said anticipatory: the agent acts as if it 
expects a certain result in future even if a current stimulation does not confirms expectations. 
For example, the agent persists moving in a chosen direction after it has entered a gap despite 
the stimulation increases no more. An anticipatory behavior of this primitive type is typical 
for real organisms, and it had been argued (Riegler, 2001), that anticipatory rules are crucial 
for really adaptive behavior. Furthermore, it was argued that organisms do not track 
continuously the stimulation from an environment. Instead, they check for external changes 
and correct their behavior at some moments of time only, while relying on internal 
anticipations at any other time. Thus, organisms avoid an unaffordable task of tracking every 
minute change in an incessant flow of external stimulation  (Riegler, 2001). In line with the 
argument, the agent corrects its movement in gradients from time to time only, and neglects 
external changes during lengthy time intervals. 

Fifth, because an operationally closed system operates on its own states only, it had been 
argued also, that it does not discriminate between internal and external perturbations (Peschl 
and Riegler, 1999).  As a result, a behavior could be generated in response to internal 
perturbations, with no reference to external events. This is exactly what takes place when the 
agent leaves the source of odor and “inspects” surrounding areas, or when it leaves a food 
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patch and crosses an empty area when sampling patches.  These inspections are potentially 
adaptive, because the agent has a chance to find new odor source or richer patch. Again, this 
consideration returns us to the importance of spontaneity and variability for a behavioral 
adaptation. Agents’ movements never repeat themselves, and this accounts for variability in 
duration of ARS or unpredictable sampling of patches. This variability is typical of animals, 
and could be viewed upon as a primitive form of exploratory behavior observed in the simple 
agent.  
 Thus, behavioral rules revealed by the agent do conform, at least, some of those principles 
that have been proposed to account for an adaptability of animal behavior.  
 
6.3. Where do the rules emerge from? 
 

The process that control behavior of agent is driven by the internal noise, which results in 
phase transitions in each of CPG. In their turns, CPGs interact to produce movements of 
agent. The observed spontaneous wandering behavior is an external manifestation of this 
process. All other rules produced by the agent are externally caused modifications of the 
wandering. There would be no emerged rules if not for this basic spontaneous behavior. 
 These results favor the hypothesis that searching rules shared by a variety of organisms 
may be rooted in basic properties of non-linear systems. Primitive types of adaptive behavior 
might emerge as a whole, even from as simple system as we described here.  
 
6.4. Conclusions and implications   

 
The current dynamical approach to adaptive behavior is based on the assumption that 

desirable behavioral traits can be evolved in the course of evolution gradually, by a mutation 
and selection of dynamic systems and their components (see e.g., Beer, 1997). This approach 
does not presume that a primitive adaptive behavior may, in a sense, be inherited to these 
systems. Our results lead to a quite different suggestion. An adaptive behavior in living being 
need not be evolved from a scratch in the course of evolution. Instead, the evolution needs 
only develop further behavioral primitives that already had existed. This suggestion could be 
verified by simulating an evolution of the same CPG in different environments.  

The behavioral rules revealed by the agent are a small part of what could be observed even 
in simple organisms. However, a modification of these systems may give rise to more rules. 
The study may start with a variation of system’s parameters: for example, the logistic map 
used in our simulations reveals a chaotic dynamics within certain range of parameters (May, 
1976), which may result in an emergence of new rules. Besides, our preliminary results 
suggest that new adaptive rules may emerge even without any changes of previously set 
parameters if the agent is provided with additional sensors. For example, we added a sensor 
that is activated by contact with an obstacle and sends an inhibitory output into both turn 
CPGs in the same way as the odor sensor. Rather unexpectedly, this makes the agent capable 
of obstacle avoidance when moving in an odor gradient. The same sensor also makes the 
agent capable of wall following. It may “voluntarily” change a direction of wall following, or 
leave a wall and resume the unguided walk.  

Furthermore, the searching rules described here are primitive in both meanings of the 
word: they are simple, and they are similar to those rules that might evolve at earlier stages of 
evolution. The problem is whether a basic simple system can be developed so that more 
advanced rules could emerge  “ready-made” similar to an emergence of primitive rules, 
without a necessity to develop them gradually. For example, is it possible to achieve this goal 
by adding more CPGs to an agent?  Can a complex action sequence (like, e.g., foraging trips 
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in bees) emerge this way?  Will primitive rules still be preserved, as an agent grows more 
complex?  
 Additionally, an artificial evolution of dynamic agents similar to one described here may 
provide an opportunity to raise and investigate the following problems. How simple could be 
an underlying dynamic system to ensure viability of populations of agents in a given 
environment? Why rules observed in real organisms are as they are? Why a very different 
organisms use essentially similar behavioral rules for similar purposes, while other rules 
could be imagined, at least in principle? In other words, to what extent adaptive abilities of 
living being, as well as evolution of these abilities, are constrained and steered by laws of 
non-linear dynamics?  
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